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Executive Summary

The meteorological and air quality modeling study described in this report is one compo-
nent of a project sponsored by the Toronto Atmospheric Fund (TAF). The purpose of this
study, performed at the Lawrence Berkeley National Laboratory, is to assess the potential
role of surface property modifications on energy, meteorology, and air quality in the
Greater Toronto Area (GTA). This study is both preliminary and relatively qualitative in
nature. The component discussed here uses numerical models to establish the possible
meteorological and ozone air quality impacts that could result from increased urban
albedo and vegetative fraction, the so-called “cool-city” strategies. More specifically, the
purpose of this study is to investigate whether it is worth pursuing this idea further. Based
on results reported here, the answer appears to be affirmative and future, more detailed
studies should be carried out in this direction.

Adopting cool-city strategies, such as increasing urban vegetation and the use of high-
albedo building and urban materials, can significantly reduce urban energy consumption
and improve pedestrian-level thermal comfort, particularly during periods of hot weather
in summer. This can be even more critical during heat wave periods when heat-related
hospitalization and mortality can increase. It is noteworthy that, while improving comfort
in the summer, reducing the urban heat island (UHI) does not influence thermal comfort
in the winter. The reduction in UHI is negligible during the winter. This is due to smaller
amounts of incoming solar radiation, stronger winds, increased precipitation, snow cover,
and general cloudiness in this season. Thus, on an annual basis, cool-city strategies seem
to be beneficial. As a result, the implementation of such strategies is currently being in-
vestigated in the U.S. and Canada.

Changing surface properties in large urban areas and the ensuing local meteorological
changes are expected to affect air quality. The reduction of the urban heat-island effect,
expressed as changes in mixing height, temperature, wind speed and direction, as well as
possible changes in precipitation, will play a role in the chemical processes producing
ozone. For example, the potential increased reflectance of ultraviolet (UV) radiation will
directly increase photochemical reaction rates. The reduced temperature will decrease
emissions of VOCs and other fugitive gases from evaporative sources such as fuel
storage and handling facilities. Furthermore, diminished energy consumption from the
urban area will result in reduced emissions from power generation facilities. The general
trend of the expected changes mentioned above suggests an expected overall reduction of
ozone production rates in the vicinity and near downwind region of the modified urban
areas. The specific local effects, however, are the result of a complex set of chemical re-
actions as well as the perturbed variables affecting the reactions. Some reactions may be
slowed, and there may also be changes in reservoir species such as peroxyacetylnitrate
(PAN); thus, exporting pollutants to form ozone at downwind locations.

The objective of this study was to simulate possible scenarios for urban heat-island miti-
gation in the GTA and to investigate the consequent meteorological changes. The second
objective was to perform limited air quality analysis to get an initial assessment of possi-
ble impacts. The available air quality and emissions data is incompatible with models,



xiv

such as UAM,1 UAM-V, and CAMx,2 we currently use. So instead, the air quality
analysis was based on photochemical trajectory modeling. This approach probably is not
accurate or appropriate enough to capture the regional conditions and impacts. This is the
reason why we believe that the air quality results discussed in this report should be
viewed as relatively qualitative. This aspect of the study can be improved upon in the
future.

The present study was based on a combination of mesoscale meteorological modeling,
Lagrangian (trajectory), and photochemical trajectory modeling to assess the potential
meteorological and ozone air-quality impacts of cool-city strategies in Toronto, Canada.
The results are discussed in detail in the body of this report. The meteorological model
(MM5) predicts a UHI in the GTA, which tends to occur relatively more frequently
during the daytime than nighttime. The MM5 predicts a UHI in the order of 2 to 3 °C in
locations of maxima, and about 1 °C as a typical value over most of the urban area. While
such a UHI seems typical, the simulations also suggest that the city can be cooler than the
rural surrounds at times. A related note here is that heat islands can vary significantly
depending on location, season, weather conditions, and urban properties, such as energy
use, anthropogenic heating, building geometry, and other factors. Thus some UHIs peak
at night, others during the day, some in summer, others in winter, and so on. The
simulation of the episode used and related conditions suggests a relatively more prevalent
daytime heat island compared to its nighttime counterpart.

The meteorological simulations suggest that the effects of cool-city strategies are to
reduce local urban air temperature by a typical level of 0.5–1 °C. In separate instances,
larger decreases in air temperature, such as 1.5 °C, and some decreases on the order of
2.5–2.7 °C and 4–6 °C are also simulated. The larger decreases appear as more sporadic
events than physically justifiable ones and are thus ignored in this analysis.

In terms of ozone mixing ratios along the simulated trajectories, the effects of cool-city
strategies appear to be on the order of 2 ppb, a typical decrease. The photochemical tra-
jectory model CIT (California Institute of Technology) also simulates larger decreases,
such as 4 to 8 ppb. However, these are not taken as representative of the potential impacts
in this report. While a decrease of 2 ppb in ozone concentration may seem like a small
change, a comparison with other simulations suggest very crudely that a decrease of this
magnitude corresponds to significant “equivalent” decreases in both NOx and VOCs
emissions in the region.

This study is very preliminary; it serves as an initial step towards more comprehensive
and detailed studies of this type. Based on the preliminary results reported here, it appears
that UHI control in the GTA is significant and, therefore, is worth further study. It is rec-
ommended that better input data and more accurate modeling schemes be used to carry
out future studies in the same direction.

                                                
1 Urban Airshed Model
2 Comprehensive Air Quality Model with extensions
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1 Introduction and Background

The energy balance in urban areas is strongly affected by urban geometry, surface prop-
erties, and release of anthropogenic heat, all of which interact to produce urban heat
islands (Taha, 1997a). Of course, the extent and intensities of urban heat islands depend
strongly on temporal aspects (diurnal and seasonal) of the weather and synoptic condi-
tions. It also depends on other factors such as the location, topography, size of the city
and its population density (Oke, 1987; 1988).

Most urban surfaces are constructed of dark materials. The interaction of these materials
with incoming solar radiation is characterized by relatively high absorption coefficients.
In addition, urban areas are characteristically less vegetated than their surroundings and,
as such, have a reduced rate of evapotranspiration. Both of these characteristics result in
the warming of urban air relative to that of the rural surroundings. Urban heat islands also
seem to grow over time. In California, for example, Goodridge (1989) has shown that
before 1940, the average urban-rural temperature differences for 31 locations in Califor-
nia were all negative. After 1940, as paved surfaces replaced vegetation in large areas,
the urban temperatures surpassed rural temperatures, leading to a clear temperature in-
crease of approximately 1°C from 1965 to 1989 (averaged over all 31 urban areas in Cali-
fornia). Adopting “cool city” strategies, such as increasing urban vegetation and the use
of high-albedo building materials, can significantly reduce urban energy consumption (by
reducing both direct radiative heating of buildings and ambient temperatures) and im-
prove pedestrian comfort levels, particularly in hot climates.

Because of the complex nature of the urban photochemical system, i.e., meteorology and
chemistry, the combination of changes in meteorological and emission conditions might
lead to various outcomes. For example, the main driver for the decrease in ozone mixing
ratios is the temperature, which can reduce chemical reaction rates. Slower reactions will
cause precursors to be carried further downwind, spreading out the ozone production over
a longer distance. This phenomenon reduces local ozone mixing ratios while possibly
producing higher levels of ozone by enhancing these ratios downwind. Other meteoro-
logical changes, such as reduced mixing height and wind speed, can cause both increases
and decreases in ozone mixing ratios.

Modeling studies suggest that increased surface albedo and vegetation fraction in urban
areas can reduce surface and air temperatures near the ground and affect related mete-
orological parameters such as winds and the depth of the mixed boundary layer. The gen-
eral impacts of relatively lower ambient temperatures on air quality and energy use
include: 1) a reduction in temperature-dependent photochemical reaction rates; 2) a de-
crease in temperature-dependent biogenic hydrocarbon emissions; 3) a decrease in evapo-
rative losses of organic compounds from mobile and stationary sources; and 4) a
decreased need for cooling energy and electricity generating capacity, which ultimately
leads to less emissions from power plants. For example, Taha (1996; 1997b) and Taha et
al. (1999) show that, through controlling urban heat islands, it is possible to reduce air
temperatures by 2 to 4 °C in summer in urban areas of the United States; thus, reducing
“exceedance” exposure to ozone (above the national air quality standard) by 10–20%.
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Taha et al. (2000) show that the effects of heat-island reduction (HIR) strategies in Salt
Lake City (UT), Baton Rouge (LA), and Sacramento (CA), tend to be generally positive,
though negative effects, such as increased ozone concentrations, can still occur. In similar
modeling of episodes in Atlanta, Nashville, and Dallas, Taha (1998) shows virtually no
change using a conservative scenario, and net ozone mixing ratio reductions of 2%, 0.4%
and 5% respectively in a larger-modifications scenario. In these studies the maximal re-
duction is always larger than the greatest increase in ozone mixing ratio and it occurs in
the area with the highest predicted mixing ratios.

Preliminary results by Taha et al. (2001) show that the impacts of cool-cities in Houston,
Texas, amount to some ±3 °C in air temperature and detectable changes in air quality.
The effects of cool-city strategies are mostly cooling. However, warming can also occur.
For example, warming can occur downwind due to changes in winds and mixing. In
Sacramento California, Taha et al. (2000) show that a peak of 139 ppb can be decreased
to 130 ppb as a result of increased surface albedo and vegetative cover in the region.

Following the above studies, the Toronto Atmospheric Fund (TAF) funded a limited
study at Lawrence Berkeley National Laboratory (LBNL) to assess the effects of UHI
control on Toronto’s climate, energy use, and ozone air pollution. Described in this re-
port, the purpose of the meteorological modeling and air quality analysis sub-task of the
TAF project was to understand the factors leading to ozone air pollution problems in the
GTA and to quantify the potential impacts that could result from implementing the cool-
city strategies.

This study investigates the possible impacts of heat-island mitigation efforts on the air
quality in the GTA. Given the fact that the GTA is located at relatively high latitude, the
effect on the air quality is expected to be small. Nonetheless, in the context of major ef-
forts to reduce ozone levels to “acceptable” levels, this small effect should not be ig-
nored. In places such as Los Angeles, where other strategies have already made relatively
low-cost ozone reductions without having achieved the goals set, any further reduction in
ozone level has a high cost-to-benefit ratio. Therefore, strategies such as cool-cities may
be considered a valuable advancement in the right direction. For example, the potential
savings based on population-weighted ozone mixing ratios simulated for the Los Angeles
basin, where the pollution is especially serious, is estimated to be $360 million per year
(Rosenfeld et al., 1998).
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2 The Case for Toronto

Three major regions in Canada, namely the Lower Fraser Valley (LFV), Southern Atlan-
tic Region (SAR), and Windsor-Quebec City Corridor (WQC), often experience ozone
air pollution levels that are above the acceptable level, an 82 ppb cutoff ozone mixing
ratio adopted in Canada. Toronto is located in the WQC region. The main ozone precur-
sor sources in this region include transportation, power plants, and industry. Another con-
siderable source of ozone is industrial activity in the United States, which is particularly
important in summer when winds are mainly from the southwest. Environment Canada
(1996) estimates that about 20–40 ppb of the local ozone mixing ratio in Toronto and
Southern Ontario is transported from the U.S. In other words, the United States contrib-
utes around 50–60% to the ozone levels in southern Ontario.

As with any other area, meteorology plays a significant role in Toronto’s ozone air qual-
ity. Wind speed and direction, thickness of the boundary layer, solar radiation, air tem-
perature, and atmospheric water vapor all affect the rate of photochemical smog produc-
tion. Temperature is of particular interest in this study since the focus is on urban heat
islands and their potential mitigation. In a Classification And Regression Tree (CART)
type analysis, Burrows et al. (1995) found that for WQC, the most important predictor for
ozone mixing ratio, especially the maxima, was the maximum air temperature. Burrows
et al. found that, for WQC, the maximum air temperature should reach at least 25 °C be-
fore there was any statistically significant probability that ozone-mixing ratios exceeded
80 ppb. They also found that near the lakes, such as in the GTA, wind direction and speed
became important factors in air temperature as well as transport of pollutants. Synoptic
weather conditions are also critical and various studies have examined the response in
ozone production to various aspects of atmospheric circulation and conditions. Yap et al.
(1988) studied ozone formation conditions in southern Ontario. They found, for example,
that higher mixing ratios of ozone in this region tend to occur in the backside of a slow-
moving high-pressure system (anti-cyclonic). In such incidences, the winds also would
have traveled over major precursor sources in the northeastern the United States and
arrived in Toronto on a southwesterly path.

The ozone air quality in the GTA, while not severe in comparison with some cities in the
U.S., Mexico, or Brazil, could get worse in the future if no action is taken now. There are
two reasons for this prediction: 1) the expansion and urbanization trend in the area, and 2)
potential effects of urban warming, urban heat islands, and climate change. So while
absolute ozone concentrations my not be very high at present, the trend in ozone is
relatively important. Even without climate change or urban heat-island effects, the ozone
trend is significant in Toronto. For example, Xu et al. (1995) filtered out the impacts of
meteorology on ozone production to compute meteorologically-adjusted trends in daily
maximum ozone mixing ratios. They found out that the trend was 2.5%/year for the GTA
and 1.2%/yr for the province of Ontario. If the effect of a growing urban heat island was
added to that trend, the results could be much worse. In addition, the effects of future
climate change could also become important once the environment had warmed by some
3 °C or more, as some General Circulation Models (GCMs) predict. In this case, the
region could benefit if some local cooling, such as via cool-city strategies, could be
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implemented to help offset the local, non-transport air quality implications of such
warming.

In general, ozone-mixing ratios in the GTA are relatively low compared to other areas in
North America. With some exceptions during bad air-quality episodes, the typical ozone
mixing ratios in Toronto are in the order of 30 to 80 ppb. For example, from 1986 to
1993, the monthly mean maximum ozone in the GTA was the highest, 55 to 75 ppb, in
July (Figure 2.1). Figure 2.2 shows the hourly average ozone-mixing ratios for 1986–
1993, segregating summer and winter components. During the same period, the average
number of days with ozone higher than 82 ppb was about 15 per year, and the number of
hours was about 70 per year (Environment Canada, 1996). In the GTA, ozone
concentrations peaked at about 1500 LST (local standard time) while mixing-ratios
greater than 82 ppb could linger through 2100 LST (Figure 2.3). In some specific sites in
the GTA, such as the CN Tower, high mixing-ratios could be experienced throughout day
and night. The worst air quality years in Toronto have occurred since 1993. To capture
this fact, the present study uses data from and simulates a time period in July 1995.

Even though the GTA is located at relatively higher latitude, it would still be beneficial to
develop a mitigation strategy based on increased urban albedo and vegetative cover. On
short- (meteorological) and long-term (climatological) scales, reducing urban air tem-
peratures will provide health, biospheric, atmospheric, and economic benefits. For exam-
ple, health problems and hospitalizations from heat stress or poor ozone air quality can be
relieved if urban temperatures are reduced (Rosenfeld et al., 1998). In addition, reduction
of air temperatures positively affects the thermal comfort as well as the health of the res-
piratory system, when temperature-related emission of precursors and production of at-
mospheric ozone are slowed down. In terms of biospheric benefits, the impacts of
reduced heat stress and reduced formation of oxidants, such as ozone, can directly reduce
damage to forests and sensitive crops. In terms of economic benefits, lowering urban air
temperatures in summer lowers cooling bills without compromising thermal comfort in
winter.

Changing surface properties in large urban areas and the ensuing local climatic change
are expected to affect the air quality. The reduction of the urban heat-island effect, ex-
pressed as changes in mixing height, temperature, wind speed and direction, as well as
possible changes in precipitation, will play a role in the chemical process. For example,
increased reflectance of UV radiation will directly increase photochemical reaction rates.
However, the reduced temperature will decrease emissions of VOCs from biogenic and
evaporative sources. Furthermore, diminished energy consumption from the urban area
will result in reduced emissions from power generation facilities.

The general trend of the expected meteorological changes mentioned above indicates an
expected net reduction of ozone production rates in the vicinity and the near downwind
region of the altered urban area. The specific local impact, however, is the result of a
complex set of chemical reactions as well as the perturbed meteorological variables af-
fecting these reactions. Some reactions may be slowed, and there may also be changes in
reservoir species such as peroxyacetylnitrate (PAN). Each of these effects, however, may
help export pollutants to form ozone at downwind locations.
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Ideally, modeling and estimating the effects of cool-city strategies on ozone air quality
would be based on parallel runs of an air shed photochemical grid model. This type of
investigation would be based on regional modeling similar to the type often performed in
the U.S. for regulatory purposes by the EPA. But it appears that only limited photo-
chemical modeling currently exists for the GTA that could be compatible with this ap-
proach. The following is a list of photochemical simulation available for the GTA:

• Model simulations performed on a region-wide scale using the Acid Deposition
and Oxidants Model (ADOM). The detail for the input and output in the GTA is
quite small, using only a few pixels for the city itself. Various working groups for
Environment Canada performed these runs for episodes in 1988 as a basis to
compare different NOx/VOCs emission scenarios.

• Photochemical modeling on the regional scale performed using the Canadian
Hemispheric and Regional Ozone NOx System (CHRONOS) model in semi-
operational mode to produce daily forecasts of ground-level ozone over eastern
Canada. This effort has been going on over the past three summers. The model is
still in the test phase and is not yet considered reliable for result publication or
data transfer for use in this study.

• A detailed modeling task using MODELS3 (Byun and Ching, 1999) ordered by
the Toronto Municipality. This project is currently underway and thus the data is
still preliminary. Also, the resolution of the data is coarse for this type of study.

None of the above modeling setups met the needs of the current project as a basis for
modeling air quality implications of urban albedo and forest modifications. The Canadian
air quality modeling efforts described above were performed with modeling systems dif-
ferent from UAM, UAM-V, CAMx, CIT currently used at LBNL. Due to the limited re-
sources for this study, instead of using a 3-D photochemical grid model, a mesoscale
meteorological model in conjunction with a trajectory air quality model had to be used.
Accordingly, all obtained emissions and air quality data were extracted along the trajec-
tory for each time-space step before they could be used as input into a trajectory photo-
chemical model.

3 Method

Ideally, a study of urban meteorology and heat islands would employ fine-resolution
modeling to capture various small-scale phenomena and impacts, e.g., Taha (1998); Taha
and Bornsetin (1999); Martilli (2001); Mestayer and Bornstein (1998). However, in this
preliminary study, a more general meteorological (mesoscale) and trajectory air quality
modeling approach is used in the study. This can be improved upon in the future.

Thus, the method employed in this preliminary modeling project involves using a meso-
scale meteorological model to simulate selected episodes in the GTA. The resulting four-
dimensional meteorological fields are then used to generate forward, backward, and other
sets of trajectories to and from the GTA. Meteorological parameters are then extracted for
each time step along each generated trajectory. These meteorological parameters and tra-
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jectory information are then used as input to a Lagrangian photochemical (trajectory)
model, along with other emissions and related input, to assess the base air quality condi-
tions, such as ozone-mixing ratios, along each trajectory. The entire process is then re-
peated to simulate the effects of cool-city scenarios and assess the resulting changes in
meteorological and air quality conditions. In this study, the meteorological model used is
the Pennsylvania State university/National Center for Atmospheric Research
(PSU/NCAR) MM5 v3.4. The “meteorological” trajectory model is based on the Flextra
model. Finally, the photochemical trajectory model is the trajectory version of the CIT air
shed model. These models are described in the following sections.

3.1 Models

This section briefly describes the meteorological, trajectory, and photochemical models
used in this study.

3.1.1 Mesoscale Meteorological Model (PSU/NCAR MM5)

The meteorological modeling in this study was performed with the most recent version of
the PSU/NCAR MM5 (version 3.4). The MM5 is a state-of-science, non-hydrostatic,
three-dimensional (Eulerian) primitive equation grid model that is gaining wide accep-
tance in the scientific and regulatory communities in the U.S. The MM5 has been used by
researchers, meteorologists, and scientists in numerous applications including: weather
forecasting; air pollution forecasting; frontogenesis, thunderstorms; hurricanes; urban-
scale phenomena, such as urban heat islands and related convective circulations; land-sea
breeze circulations; and topographically-induced flows. Though utilized worldwide, the
MM5 is mostly used in the United States in both research and forecast/operational modes.

The modeling system is comprised of several components collectively referred to as the
MM5. The model has been under continuous development since the late 70s and is based
on an original formulation (Anthes and Warner, 1978; Anthes et al., 1987) that was de-
veloped and maintained by the Pennsylvania State University in collaboration with the
National Center for Atmospheric Research. More recently, the model has undergone sig-
nificant changes and improvements (Dudhia, 1993; Grell et al., 1994).

The MM5 can be run on a variety of Unix-variants platforms, ranging from super-
computers to workstations to high-speed PCs in standalone or parallel modes, such as
Beowulf clusters. In this particular modeling study, the MM5 was run on a quad-
processor SUN workstation running the Solaris 8 operating system. The model is rela-
tively computing-intensive, especially if fine grids and multi-level nests are used. The
model includes the following features: one- or two-way multi-level nesting capabilities; a
“moving-nest” option that can track weather phenomena of interest; Four-Dimensional
Data Assimilation (FDDA); and a variety of physical options and parameterizations.

The model is based on the prognostic equations for momentum, heat, water vapor, and
perturbation pressure. The model equations are solved using finite-differencing schemes,
such as leapfrog and semi-implicit. For this purpose, the model staggers the variables
(velocity vs. scalars) on an Arakawa-B grid. The model features various options for
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physics, explicit moisture treatment, cumulus and convective parameterization,
boundary-layer formulations, and an ability to incorporate a land surface model (OSU or
PX). The model is also capable of incorporating observational data or analyses (FDDA)
during model equation integration (Seaman et al., 1995).

As will be explained later in this report, the initial and boundary meteorological condi-
tions used by the MM5 can be obtained from archived three-dimensional analyses at the
National Center for Atmospheric Research (NCAR). These are then mapped onto the
coarse domain of the simulation during the initial pre-processing steps in the MM5 mod-
eling system. The lateral boundary conditions are then digested in the model using a
relaxation technique applied to outermost five rows and columns of the mother domain.
The model can map information in various projection systems, such as Mercator, Lam-
bert Conformal, and Polar stereographic.

The input to the MM5 includes: gridded surface characterization; topography; land-water
boundaries; land-use and land-cover; sea-surface temperature; initial and boundary mete-
orological conditions, analyzed on pressure levels; and observations, when using obser-
vational nudging FDDA. The output from the MM5 is a complete four-dimensional
description of the state of the atmosphere and the ground, if desired. Typical forecast
variables include temperature, winds, pressure, water vapor mixing ratios, cloud/rain,
water and ice, mixing height, and a host of other derivatives based on or extracted from
these variables.

3.1.2 Meteorological Trajectory Model

In order to prepare the needed input to the CIT trajectory model, the output from the
PSU/NCAR MM5 was used to drive a meteorological trajectory model as an intermediate
step. The purpose of this intermediate step was to identify the trajectories by specifying
the air parcel location (x,y,z,t) at each step, extracting the associated meteorological
fields along the trajectories, and use them as input to the CIT model. The Flextra model,
used here, is a Lagrangian trajectory model originally developed for use with the models
of the European Center for Medium-Range Weather Forecasts (ECMWF) (Stohl et al.,
1997; Stohl, 1999; Wotawa and Stohl, 2000). In this study, a special version was applied
to the MM5 model. The MM5 v3.4 hourly output was first converted into MM5 v2 and
then fed into the trajectory model.

In simple terms, a trajectory is defined as a succession of points that are obtained from
computing the position vector at given time steps. Thus:

P(t) = P(t-1) + ½ ∆t [ V(t-1) + V(t) ], (1)

where P and V are the position and velocity vectors, respectively; t and t-1 are time inter-
vals and ∆t is time step. In this application, the minimum time step is 1 second. However,
the model uses a flexible time step determined by the CFL (Courant-Friedrichs-Lewy)
stability criterion, such that V∆t/∆x << 1. Equation (1) is referred to as Petterssen’s
scheme (Petterssen, 1940), and is solved iteratively. Convergence is reached when the
difference in trajectory position between two iterations is smaller than 0.0001 grid units.
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The Flextra model allows for computation of different types of trajectories including:
three-dimensional, iso-eta, mixing-layer, isentropic, and isobaric trajectories. The results
presented here were obtained from running the model in back-trajectory mode, using iso-
baric trajectories at 1000-mb pressure level. Then, at each time step, the model calculated
the σp level associated with 1000-mb pressure to follow that level for the trajectory
advection. The model had the capability to handle the various nests from the MM5
model, as it could import all the meteorological fields according to nest location and
resolution and handle the trajectory exit from one domain to another accordingly. Finally,
a combination of tools and codes were put together to extract the meteorological
parameters along the trajectory for each time step and location and prepare the input to
the CIT photochemical trajectory model.

3.1.3 Photochemical Trajectory Model

The complex and interactive nature of the process involved in assessing the net effect of
large-scale albedo changes on the air quality necessitated the use of numerical photo-
chemical modeling. As mentioned earlier, the preferred tool for such assessments would
have normally been a regional three-dimensional photochemical airshed model. How-
ever, the objective of this study was to perform only a limited, short-term air quality
analysis whereby the use of a 3-D model would not be possible. As a result, a photo-
chemical trajectory model was used to conduct this study.

The CIT photochemical trajectory model was used in this study to perform multiple runs
and to analyze the sensitivity of the output to variations in certain input parameters such
as emissions and meteorological conditions. The model was also used to assess the
changes in the air quality within urban areas, such as Toronto, as well as their downwind
following the implementation of cool-city strategies.

Within the column of the trajectory photochemical model, mixing ratios of species are
computed from equation 2:

∂Ci/∂t = ∂/∂z[Kz ∂Ci/∂z ] + Ri + Si , (2)

where C is concentration of species i, t is time, z is height, Kz is the vertical eddy diffu-
sivity, R is production or scavenging by chemical reaction, and S is source/sink term for
species i. The equation is subject to initial conditions or concentrations, as well as surface
and top boundary conditions as:

Vd Ci - Kz ∂Ci/∂z = Ei z=0, (3)

Kz ∂Ci/∂z = 0 z=Ztop, (4)

where Vd is deposition velocity, and Ei is emissions of species i at the surface. The model
does not account for horizontal diffusion within the column. Lateral inflow and outflow is
assumed zero. The model equations are integrated using finite-difference methods.
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The CIT air quality trajectory version model uses the SAPRC993 chemistry solver.
SAPRC99 is a widely used solver implemented in many three-dimensional models. It
uses a lumping scheme based on weighting chemical reactivity, and also enables input of
specific compounds. A full description of the chemical mechanism can be found in Carter
et al. (1997). The model utilizes a vertically stacked column of fixed-altitude cells, five
vertical layers, coupled by parameterized turbulent mixing. Emissions occur in any cell
and each cell is well mixed. A no-flux boundary condition is applied at the top of the col-
umn (equation 4), which is set to be above the mixing height. The model also implements
the hybrid algorithm numerical integration (Young and Boris, 1977). This model has
been described in detail by Reynolds et al. (1973); McRae and Russell (1981); McRae
and Seinfeld (1982); McRae and Seinfeld (1983); and Bergin et al. (1999).

At LBNL, certain aspects of the model were modified to create a more appropriate tool
for use in this modeling study. For example, in order to better simulate and quantify the
response to ‘cool city’ changes, the model was modified to calculate actinic flux. The in-
tegration scheme was modified so as to recalculate the actinic flux for each calculated
cell elevation; thus, improving the accuracy of the model in that regard. The previous
version used less accurate lookup tables for this purpose. In addition, the new calculation
would be sensitive to wavelength-specific surface reflectivity. The model previously used
clear-skies actinic flux approximated by a radiative transfer model as a function of
wavelength and zenith angle, as described by Peterson (1976). This data could then be
scaled for cloud cover and/or aerosol column if better specific data were available.

In order to assess the impact of variations in actinic flux resulting from localized changes
in surface reflectance, the actinic flux routines from the Tropospheric Ultraviolet Visible
(TUV) model were incorporated in the model (Madronich and Flocke, 1998). This
incorporation allowed for modeling local actinic flux according to spectral surface
reflectance, wavelength, zenith angle, cloud cover and latitude, as well as enabling the
replacement of the atmospheric aerosol profile if specific data were available for the
modeled conditions. As a result, the model earned an increased sensitivity to changes in
urban and ground albedo. It is noteworthy that the changes described above made the
model predict impacts of cool-city strategies more conservatively.

3.2 Input Data

The input data types used in this modeling study are discussed next. These include mete-
orological data, surface characterization, land-use distribution, emissions, and ambient
air-quality data.

3.2.1 Meteorological Data

The initial- and boundary-condition data needed to run the model were obtained from the
US NCAR/NCEP Reanalysis Project (NNRP) for the episode of interest in this study
(July 10 through 17, 1995). The NNRP is a global analysis with data available every six
hours and archived on a 2.5° × 2.5° grid of latitude and longitude. The gridded data are in
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GRIB format and contains an archive of analyses for all meteorological parameters on
pressure levels. NNRP also contains skin sea surface temperature (SST) for major water
bodies. Although the difference is perhaps not so relevant for this study, NNRP does not
contain real SST as other data sources might contain.

The period selected for simulation in this study coincides broadly with the timing of the
Chicago heat wave period of 1995. There existed many reasons for selecting this period
for this study. The main reasons were that 1) the emission data we obtained in this study
were specific to the July 1995 episode; 2) this episode is one (among others) that Envi-
ronment Canada and affiliates use in photochemical modeling; and 3) an argument can be
made that it is sometimes useful to simulate the meteorological effects of heat-island
control under relatively extreme conditions such as those encountered during this
episode.

The initial and boundary conditions were selected to coincide with the sub-episodes dis-
cussed in section 3.3.2. While the meteorological analyses were quite extensive, they
were typically gridded at low resolutions (~250 km) and thus might not have captured
atmospheric phenomena of fine scale or local detail unless additional observational data
were assimilated in the model run. Due to the limited scope and resources for this study,
instead of assimilating observational data nudging, the option of analysis nudging was
pursued. The lateral boundary conditions were those of time and inflow-outflow relaxa-
tion. The top boundary conditions were those of an absorbing layer. The surface bound-
ary conditions were those for prognostic surface temperature and SST.

3.2.2 Surface Characterization

Historically, our simulations of the effects of cool-cities have relied on fine-resolution
land-use information to develop both base line and modified-case scenarios. Base line
conditions represent the surface properties in a region as it currently is, whereas the
modified-scenario conditions represent the updated surface characteristics of the region
after the “implementation” of heat-island control strategies, such as increased surface
albedo and urban reforestation. The land-use information used in the past is typically
based on the US Geological Survey (USGS) Land-Use/Land-Cover (LULC) data for the
coarser-resolution domains of the meteorological simulations. For the finer-resolution
domains, and around urban areas of interest, previous modeling work has relied on local
data and project-specific information, such as those obtained from low-altitude, aircraft-
based orthophotography or region-specific field campaigns. Examples of orthophotogra-
phy-based characterizations include the flyovers in Sacramento, CA and Salt Lake City,
UT (Akbari et al., 2002).

Taha (1997a, b; 1996) and Taha et al. (2000; 2001) used the above approach in modeling
Los Angeles, California; Houston, Texas; Sacramento, California; Baton Rouge,
Louisiana; and Salt Lake City, Utah. In the past, the typical resolution of such data
ranged from 30 cm in aerial orthophotos to 200 m in USGS LULC and 1 km in LULC for
Houston and Los Angeles. When appropriate, coarser-remotely-sensed data, such as
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AVHRR4 and GOES5, were used. Of course, the data would typically be geo-referenced,
such as in Universal Transverse Mercator (UTM) system or other map projections.

Because of limited resources, only default land-use and land-cover information, such as
that typically used in MM5 modeling, was used in this modeling effort. While some of it
could be outdated, such data would be typically based on the USGS LULC classification
system and could have a fine resolution as low as 30 seconds. The use of additional and
higher-quality data could improve the accuracy of the results in future studies.

In this study, as in the previous UHI modeling work, the land-use information was con-
verted into a set of gridded thermophysical properties such as albedo, thermal inertia,
emissivity, soil moisture content, roughness length, specific heat, soil type and so on.
Thus, the surface characterization served as a basis for computing the values of such pa-
rameters that were needed to specify the lower boundary (surface) at each grid in the
meteorological and air-quality models. In addition, some parameters were computed and
re-specified for each modification scenario, such as changes in albedo and urban vegeta-
tion fraction. These changes were then re-mapped onto the model’s grid accordingly. In
this study, the twenty-four-category MM5 USGS LULC data was used as a basis for
characterizing the surface in the modeling domain. These LULCs are listed in section
3.3.3.

3.2.2.1 Base-Case Surface Scenario

Two types of data are typically needed for this kind of analysis. The first is region-
specific surface characterization information, such as land-use and land-cover. The sec-
ond is surface-type classification, such as distribution of roofs, pavements, and other im-
pervious areas. The first dataset is used to establish a region-specific base-line meteorol-
ogy, for example, specific to the GTA. The second dataset is used in developing region-
specific scenarios for UHI control in the urban areas of interest.

Figure 3.1 shows the meteorological modeling domain selected for this study. The outer
and inner domains have grid resolutions of 8 and 2 km, respectively. Figures 3.2 and 3.3
show the current default USGS Land-Use/Land-Cover information used in the meteoro-
logical simulations to date. Again, with more recent and finer-resolution data, this simu-
lation could produce more reliable results. In these figures, the land-use category denoted
with red is urban. Toronto, Hamilton, St. Catharines, and Buffalo are easily identifiable in
Figure 3.3. Based on the dominant LULC, thermophysical properties are assigned inter-
nally to each of grid cell in the domains.

3.2.2.2 Cool-City Surface Scenario

Since there was a lack of fine-resolution LULC data for Toronto, earlier modeling meth-
odologies were followed to develop a cool-city scenario for Toronto. Therefore, the UHI-
control assumptions would be based on certain levels of modifications per surface type
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used for other North American regions (Taha, 1996; 1997a, b; Taha et al., 2000; 2001).
The bases for such modifications were then detailed in the following tables where Case 1
and Case 2 represented a moderate and a higher level of modifications, respectively. For
albedo, the assumptions were:

Table 1. Base & Cool-City Albedo Values per Surface Type after Aging, Weathering, &
Soiling.

Albedo
Surface Type Base Case 1 Case 2
Residential Roof 0.15 0.25 0.45
Commercial/Industrial Roof 0.20 0.40 0.60
Road 0.10 0.25 0.35
Sidewalk 0.15 0.25 0.35
Parking Lot 0.10 0.25 0.35

Surface-type albedo increases in Table 1 were averaged on the 200-m USGS LULC grid
to obtain the resulting increases in land-use type albedo organized in Table 2:

Table 2: Base & Cool-City Albedo Values per Land-Use Type
Albedo increase per 200-m GridUSGS LULC

200-m Grid Case 1 Case 2
Residential 0.053 0.118
Commercial 0.104 0.175
Industrial 0.083 0.145
Transport/Communication 0.143 0.237
Industrial/Commercial 0.094 0.162
Mixed Urban/Built-Up 0.074 0.136
Other Built-Up 0.086 0.155

Once applied to U.S. urban areas, such as Los Angeles, Sacramento, Salt Lake City,
Baton Rouge, Houston, and Chicago, these assumptions resulted in an average increase
of 0.07 and 0.13 in albedo for Case1 and Case 2, respectively. Of course, these results
were obtained after averaging the 200-m values onto the mesoscale model grid. Obvi-
ously, these averages were computed over the modified urban cells only. In this study,
the averages from Case 2 were used in the simulations of the cool-city surface scenario
for Toronto. Table 3 shows the assumptions for vegetation cover increases:
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Table 3. Vegetation-Cover Increase Scenarios & Assumptions

Vegetation Increase (e.g., # of
additional trees per unit) Percent Increase per 200-m Grid

USGS LULC
Case 1 Case 2 Case 1 Case 2

Residential 2 4 9% 18%
Commercial 2 4 9% 18%
Industrial 3 6 4% 8%
Transport/Communication 0 0 2% 4%
Industrial/Commercial 2 4 6% 12%
Mixed Urban/Built-Up 2 4 5.5% 11%
Other Built-Up 2 4 5.5% 11%

Table 3 provides the number of additional trees per unit (a “unit” can be a residence, a
commercial building, an office building, and so on) and the percent increase per USGS
grid after averaging back onto 200-m USGS LULC. Based on this table, it was assumed
that the increase in vegetation at the meteorological model grid was 10%. As a qualitative
indicator, this change in vegetative cover was crudely converted into the number of addi-
tional trees needed to achieve the effect. Assuming each tree covered an area of 50 m2 at
maturity (this is an average small-sized tree), the number of additional trees would be
around 920,000 in both the Toronto and Hamilton areas. This increase would correspond
to an additional 20 trees per hectare of urban land.

Surface roughness in cool-city scenario changes only slightly in urban grids where vege-
tation is increased, since building and vegetation roughness lengths are about equal. In
addition, the displacement height is not changed as it is assumed that only sparse vegeta-
tion is being added. Another important note here is that the additional vegetation intro-
duced in the area is assumed to be of the low- or zero-emitting types. Thus isoprene and
monoteropene emissions along the trajectories do not change as a result of additional
vegetation. However, biogenic emissions from existing vegetation along the trajectories
change as a function of meteorological conditions, such as temperature as discussed in
section 3.2.3. Note that increasing any of the thermophsical parameters, such as albedo,
thermal inertia, roughness length, and soil moisture, can cause both direct and indirect
decreases and increases in the air temperature of the affected areas.

The cool-city scenario being discussed here corresponds to levels of modifications given
by Case 2 in Tables 1–3. In terms of input to MM5 for simulating cool-city scenario in
the GTA, the changes translate into the following:

• The albedo over urban grids is increased from a base-case value of 0.15 to a new
value of 0.28.

• Soil moisture content is increased from a base-case value of 0.10 to a new value
of 0.15.

• Roughness length is increased from a value of 50 cm to a new value of 60 cm.
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• Thermal inertia is increased in value from 3 to 4 cal. cm–2 K–1 s–0.5.

In the MM5 land-use processing system, the above modifications affect only those grid
cells that represent the core of urban Toronto. In Figure 3.3, the grid cells identified as
“urban” do not include the entire Greater Toronto Area that stretches from Oshawa to
Hamilton. Therefore, these modifications affect a total area of only about 420 km2 in the
GTA and about 40 km2 in the Hamilton area. This is relatively a very small area to mod-
ify. By comparison, the modifiable area in Los Angeles is well above 7,000 km2, for
example. Thus, one would expect smaller effects here. In addition, the results should be
viewed as conservative, even though the increases in albedo and vegetation (in Case 2,
Tables 1–3) may seem large. Two reasons may explain this observation: 1) the total
modified area is relatively very small (some 460 km2) compared to modifications in other
regions; and 2) the modified areas in this study are smaller than the actual total urbanized
area in the Hamilton-Toronto-Oshawa corridor.

As described above, the overall modification of albedo in an urban setting is directly pro-
portional to the increase in use of high-reflectance surfaces as well as to the fraction of
the surfaces changed. The same applies to spectral reflectance in the UV waveband,
which influences actinic flux and affects photochemical reaction rates. While most
reflective materials exhibit the same reflectivity as dark materials do in the UV range,
some reflective materials may reflect a lot more in the UV range than dark materials do.
Thus, careful selection of high-albedo materials may help reduce the negative air quality
consequences related to increased reflectance of UV radiation.

Several available materials may be used as “cool surfaces.” In addition, two simple
measures may be used to reduce dark-colored surfaces: 1) replace dark surface with any
light-colored surface, or 2) use light-colored paint to cover the dark surfaces. Most sur-
faces that are visibly light-colored are also more reflective than dark-colored surfaces. In
some cases, however, appearances can be deceptive. Many commercially available white
shingles, for example, are fairly low-level reflectors (~ 25%). Coating black acrylic paint
with a thin low-ε polymer film, on the other hand, can increase the overall reflectance
from 5% to 33% by increasing reflectance in the near infrared (Berdahl and Bretz, 1997).
Similar effects have been demonstrated using green and red coatings with added pig-
ments. These pigments are all highly reflective in the near infrared, producing coatings
with overall reflectance of 50%. White coating membranes on smooth surfaces have an
overall reflectance of 80%. However, the use of such membranes for roofing currently
involves the use of gravel or other ballast, which reduces the reflectance.

3.2.3 Emissions and Air Quality (Initial Conditions) Data

The emissions used for the purpose of this study were based on the Ontario July 1995
Community Multi-Scale Air Quality (CMAQ) model database. The dataset included
detailed lumped emissions modeled according to the RADM2 photochemical mechanism
system. The Regional Acid Deposition Model (RADM2) mechanism is a lumped species
type that uses a reactivity-based weighting scheme to adjust for lumping (Stockwell et
al., 1990; 1994). The photochemical model (CIT) used in this study utilized the SAPRC-
99 lumping scheme. The SAPRC-99 mechanism, which is an update of SAPRC-97
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(Carter et al., 1997) employ the lumped surrogate species approach, but offer the
capability to incorporate semi-explicit chemistry of selected organics. The data were
mapped out to the SAPRC-99 scheme using lumping information.

Due to the lack of finer resolution emissions data for the region, the approach used in
preparing emission boundary conditions in this study is as follows. Based on the above-
mentioned coarse data set, coupled with a summation of daily mean total emissions in
each census region, an assessment was made as to the variability of emissions in the To-
ronto region. This variability was then used to vary the emissions on a local scale. These
data, together with meteorological input produced using the MM5 model, were then used
as input in the CIT trajectory photochemical model.

Biogenic emissions of isoprene and monoterpenes from plants fluctuate on daily and
longer time scales due to various factors. The main factors for these fluctuations are the
physiological responses of plants to varying temperature, humidity, light, and CO2 mix-
ing ratios. The variations due to changes in urban surface properties will be mainly
reflected in temperature changes. Expressed as fluctuations in isoprene emissions and
excluding seasonal variation, the short-term response of vegetation to temperature is
modeled as (Guenther et al., 1999):
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where x = [(1/Topt) - (1/T)] / R, T is current leaf temperature, R is a constant (R =
0.00831), T opt is the temperature at which E opt occurs, E opt is the maximum normalized
emission capacity, CT1 (95 KJ mol-1) and CT2 (230 KJ mol-1) are empirical coefficients
representing energy of activation and deactivation, respectively. CT1 and CT2 were
obtained from studies of emission rates and are considered to be largely independent of
vegetation species. Equations 6 and 7 estimate the influence of past temperatures:

E opt = 1.9 · exp {0.125(Td-301)}, (6)

T opt = 312.5 + 0.5(Td-301), (7)

where Td is mean temperature (K) of the past 15 days. The diurnal temperature variation
of the biogenic emission of monoterpene is modeled by equation 8:

M = MS · exp [β ( T – TS )], (8)

where M is monoterpenes emission rate at temperature T(K), MS is monoterpenes emis-
sion rate at a standard temperature TS(K), and β(K-1) is an empirical coefficient, typically
0.09±0.025 K-1. In this study, the above corrections were needed to estimate the
temperature-dependent variation in biogenic emissions, and other changes caused by
cool-city scenarios, along the trajectories.

The issue of reduction in emissions is complex, as a consequence of diminished energy
consumption because of direct and indirect cooling of buildings and urban areas. Esti-
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mates of this effect are highly uncertain, as power stations could be located within the
same airshed, upwind or downwind. In addition, structural factors, such as effective stack
height, and operational factors, such as the response time of the power generation system
to reduced consumption and peak power demands, further complicate the estimates. Al-
though reduced energy consumption could significantly reduce emissions from power
plants (estimated at around 10 metric tons per day or more), the reduction in emissions
will have a small influence on ozone mixing ratios (Taha et al., 1998). For this reason,
the impact of reduced energy consumption on ozone mixing ratio has been ignored in this
study.

Initial conditions (mixing ratios) for initializing the photochemical trajectory model were
based on observational data from the rural area of Hastings, Ontario. Hastings is a flat-
land site about 150 km northeast of Toronto. The data were compiled from the Southern
Ontario Oxidant Study (SONTOS) in Hastings (Hastie et al., 1996). The mixing ratios
from Hastings were used for capturing representative rural conditions in Canada, even if
trajectories start from other locations. Initial conditions were observed mean concentra-
tions for summer. Concentrations of individual hydrocarbons were back calculated from
the observed individual compounds as propylene equivalent ppb carbon (Seinfeld and
Pandis, 1998). Two sets of initial conditions were used in this study, 1x and 2x (doubled).
For NO and NO2 the corresponding initial mixing ratios were 3.7 and 0.4 ppb, respec-
tively. The doubled initial mixing ratios for non-methane hydrocarbons (NMHC) con-
centrations are shown in Figure 3.4.

The data from Hastings were used only in developing initial conditions (air quality) for
the trajectory simulations, not in emissions or other calculations. The purpose was to ini-
tialize the trajectory model with some regional average profiles. The effect of initial con-
ditions is typically negligible after 48 h of simulations (length of the trajectories in this
study is 72 h). The effect on the final simulated ozone mixing ratios in the Toronto area
was tested with 1x and 2x initial concentrations and was found to be small. Also, as will
be discussed later in this report, the potential impacts of heat-island control were basi-
cally unchanged (unaffected by doubling the initial concentrations).

3.3 Configuration

This section provides an overview of the model configuration and setup adopted in this
study.

3.3.1 Domains

As mentioned earlier, three models were used in this initial effort: one Eulerian 3-D
mesoscale meteorological model and two Lagrangian trajectory models. The computa-
tional domains for the latter two were two-dimensional (x–z) and followed trajectories
based on the wind fields generated in the meteorological model.

Initially, a domain setup was selected to encompass the entire North and Central Ameri-
can regions as well as surrounding oceans. This setup consisted of 4 nested domains at
grid resolutions of 108, 36, 12, and 4 km. The intention was to capture all domains that
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might have been used by various Canadian agencies. However, to modify some 460 km2,
in surface albedo and vegetative fraction, such a setup was unnecessarily large (see sec-
tion 3.2.2). Hence, a smaller domain combination had to be selected. This smaller setup,
shown in Figure 3.1, was used in developing the air quality modeling trajectories and
analyses. These domains are described further in section 3.3.3.

3.3.2 Episodes

3.3.2.1 Modeling for Energy Calculations

For the purpose of energy modeling and assessing the indirect effects of cool-city strate-
gies, two episodes were selected: one to represent winter conditions (January 15 through
17, 1995) and another to represent summer conditions (July 15–17, 1995). Ideally, at
least one episode per month would have been used for this modeling purpose. These
periods in the year 1995 were selected solely because the emissions data are for that year
(see below).

3.3.2.2 Modeling for Meteorological/Air Quality Simulations

The July 10–17 episode was selected to model the potential ozone air-quality implica-
tions of cool-city scenarios in the GTA. The reasons for this selection were: 1) the avail-
able corresponding air quality and emissions data that were needed in this project, and 2)
the episode was representative of summer ozone-mixing ratios, though not the worst con-
ditions. The highest concentrations during the July 1995 episode were in the range of 90–
110 ppb in the lakes region, whereas they were only about 90 ppb in Toronto. By com-
parison, mixing ratios higher than 140 ppb ozone were observed on July 8, 1988 in the
region.

In general, observational data suggested that most ozone exceedances in the GTA and
WQC occurred during the month of July. However, even though this study appears to be
episodic in nature, the simulations were intended to show the potential benefits of heat-
island control without too much emphasis on the episode itself. In the Results sections,
this episode would be described in two parts: July 10 through 14 (referred to as Case 039)
and July 15 through 17 (referred to as Case 035).

3.3.3 Model Setups and Options

The PSU/NCAR MM5 (v3.4) was used to assess the potential impacts of cool-city strate-
gies, such as UHI on meteorological conditions in the GTA. The simulations were run
with two domains (Figure 3.1). The outer (mother) domain was run with a resolution of 8
km and dimensions of 86×98 grids (about 527000 km2). The inner (nest) domain was run
with a resolution of 2 km and dimensions of 101×121 grids (about 48000 km2). The
Lambert Conformal map projection system was used to handle the terrain, land-use, and
topography (5 and 2 minute) data. The USGS 24-category LULC data were used as a
basis for surface characterization. The USGS twenty-four categories were: 1) urban and
built-up, 2) dry land cropland/pasture, 3) irrigated cropland/pasture, 4) mixed dry-
land/irrigated cropland/pasture, 5) cropland/grassland, 6) cropland/woodland, 7) grass-
land, 8) shrub land, 9) mixed shrub land/grassland, 10) savanna, 11) deciduous broadleaf
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forest, 12) deciduous needle leaf forest, 13) evergreen broadleaf forest, 14) evergreen
needle leaf forest, 15) mixed forest, 16) water bodies, 17) herbaceous wetland, 18)
wooded wetland, 19) barren land, 20) herbaceous tundra, 21) wooded tundra, 22) mixed
tundra, 23) bare ground tundra, and 24) snow or ice cover.

In the vertical direction, the model was run with 21 atmospheric levels and six soil levels.
The model top was set at 100 mb, a typical setup for MM5 model simulations. The inner
and outer domains were not run simultaneously in this study. The simulations were run
by “downscaling” the output from the coarse domain (via NESTDOWN) to the finer
domain. The coarse domain was run with the FDDA option (analysis nudging) for both
upper air and the surface variables. The analysis nudging was applied to temperature,
water vapor mixing ration, and the wind field. Two explicit moisture schemes were used.
Results presented in this report are based on the stable precipitation option only. No
cumulus parameterization schemes were selected. These simulations used a multi-layer
soil model, and the time step for the coarse domain integration was 15 seconds.

The inner domain was run after the output from the coarse domain was processed. The
inner domain’s resolution was 2 km and had the same number of vertical levels as the
mother domain. However, to capture the effects of urban heat island and perturbations
caused by cool-city scenarios, no FDDA was used in the inner domain. The same coarse
domain physics and moisture scheme were also used in the inner domain. While other
options were also similar to those of the coarse domain, the time step for inner domain
model integration was 7.5 seconds. In addition, the MRF PBL (medium range forecast
model) option was employed in both domains.

The Lambert conformal projection system was used in preparing the terrain and land-use
information and in running the MM5 forecast module. No expanded grid was used and
the 24-category USGS LULC was employed and modified in the simulations to date. In
this initial modeling work, no land-surface model option was used. Since the assumed
land physical property changes occurred in urbanized areas, it was not necessary to run
this option.

4 Results

In this section, the modeling results are presented for base and modified scenarios. The
results are discussed in terms of meteorological aspects and air quality conditions.

4.1 Episodic Results

4.1.1 Meteorological Aspects

This section describes the general outcome of the mesoscale meteorological modeling
effort. As mentioned earlier, the July episode is discussed in two parts here. While the
simulations appear to be episodic in nature, no attempt is made to reproduce the observa-
tions exactly. In addition, no model performance evaluation is performed on this particu-
lar simulation. For this limited-scope study, the focus is on the relative, not absolute, im-
pacts of changes in surface properties.
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In addition to different air quality conditions, these two sub-episodes also differ in the
general wind flow pattern as simulated by the MM5. In the following discussion and fig-
ures, only the inner domain (fine mesh) and a few selected hours during the episodes are
presented. Although UHI control affects many meteorological parameters, such as wind,
mixing, boundary-layer height, and moisture, the discussion focuses mostly on air tem-
perature as the variable of interest. In the following qualitative analysis of the tempera-
ture field, the UHI is reported at its maximum location during each discussed hour.

Case 039 (July 10–14 Sub-Episode)

Starting with Figure 4.1, two-dimensional plots of air temperature and wind vector fields
are shown at roughly 40 m above ground level. The figures show various urban areas in
the inner domain, such as major areas of Oshawa, Toronto, Hamilton, St. Catharines, and
Buffalo. The UHIs associated with these cities can be seen, more or less consistently,
throughout the modeling episode. This section, however, discusses the UHI that is asso-
ciated with Toronto only.

To begin, one may ask what constitutes an ideal reference point for UHI estimation. The
answer is to choose an undeveloped area that is upwind of the urban region. However, the
selection of the reference point or area is subjective to a certain extent, especially if
meteorological conditions change and the wind flow reverses often. In the following fig-
ures and discussion, the reference area is qualitatively defined as the envelope surround-
ing the GTA.

In general the simulation suggests both daytime and nighttime heat islands. However, the
daytime heat islands are generally larger and more persistent than those of the nighttime.
In addition, the UHI seems to be better developed when the overland flow into Toronto is
westerly, southwesterly, or northerly. The UHI is smaller or non-existent with southeast-
erly or easterly flows.

Figure 4.1 shows the temperature and wind fields for the inner domain, with grid resolu-
tion of 2 km, at 0000 LST (local standard time) on July 11. At this hour, the temperature
around Toronto is in the range of 20–22 ºC. The offshore high temperature at 24.2 ºC is
possibly a remnant of a UHI from the southeast advection the day before. The warm core
advection continues in that direction until it vanishes a few hours later. Figures 4.2
through 4.5, representing hours 0900 through 1200 LST, show the growth of a UHI
around Toronto. At 0900 through 1200 LST, the UHI, at its maximum location is about
1.9 ºC (22.9 ºC), 1.5 ºC (23.5 ºC), 1.6 ºC (23.6 ºC), and 1.7 ºC (23.7 ºC), respectively
(numbers given in parentheses are the absolute temperatures at the locations of the
reported UHIs). The UHI outline follows the shoreline and then, because of a
northwesterly wind, is displaced to the southeast over Lake Ontario. The UHI reaches
about 2.3 ºC (24.3 ºC) at 1400 LST in its maximum location (Figure 4.6). It then starts
decreasing until it vanishes at 2000 LST (Figure 4.7).

Roughly, the same cycle repeats itself over the other days of this episode. Figure 4.8
shows that the start of the UHI, at its maximum at 0800 LST on July 12 is about 0.9 ºC
(20.9 ºC). Figures 4.9 through 4.12 show that the UHI at 0900 through 1200 LST is about
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2.0 ºC (23 ºC), 1.8 ºC (23.8 ºC), 1.2 ºC (24.2 ºC), and 1.6 ºC (24.6 ºC). However, unlike
the day before, the flow near Toronto is southerly on July 12. As a result, the UHI on July
12 is advected northerly, whereas on July 11 it is advected southeasterly.

The same pattern is seen again on July 13, starting at 0800 LST with a UHI of about 1.1
ºC (24.1 ºC) (Figure 4.13). On July 13, the winds are relatively stronger. Therefore, the
UHI on this day is smaller than it is on July 11 and 12. Consequently, as seen in Figures
4.14 through 4.17, at hours 0900 through 1200 LST on July 13, the UHI is about 1.1 ºC
(25.1 ºC), 0.6 ºC (26.6 ºC), 0.1 ºC (28.1 ºC), and 1.5 ºC (29.5 ºC). In addition, a south-
westerly wind causes the northeasterly advection of UHI on this day.

Figures 4.18 through 4.34 show the corresponding time intervals after the “implementa-
tion” of the cool-city strategies as defined earlier. On July 11, except for some negligible
differences in the flow and temperatures over Lake Ontario, the conditions in the GTA at
0000 LST (Figure 4.18) are identical to the base-case conditions (Figure 4.1). However,
the UHI is smaller in space and intensity at 0900 LST (Figure 4.19) than it is at the base-
case (about 0.4 ºC smaller, at 22.5 ºC). At 1000 LST (Figure 4.20), the UHI is again
smaller in space than it is at the base-case (about 0.2 ºC smaller, at 23.3 ºC). At 1100 LST
(Figure 4.21), the UHI is relatively the same as that of the base (only 0.1 ºC smaller
UHI). At 1200 LST (Figure 4.22), the UHI is not different from that of the base-case. At
1400 LST (Figure 4.23), there is only a negligible warming of about 0.1 ºC (at 24.4 ºC).
Finally, at night (Figure 4.24), representing 2000 LST, the UHI is not different from the
base-case conditions. These observations suggest that the effects of cool-city strategies
are relatively more beneficial during morning hours until noon local time.

On July 12 at 0800 LST (Figure 4.25), the UHI is reduced by about 0.9 ºC (20 ºC instead
of 20.9 ºC in the base-case). At hours 0900 through 1200 LST (Figures 4.26 through
4.29), the UHI at 20 m level is reduced by 0.9 ºC (22.1 ºC), 0.3 ºC (23.5 ºC), 0.2 ºC (24.0
ºC), and 0.4 ºC (24.2 ºC), respectively. Finally, on July 13, at 0800 through 1200 LST
(Figures 4.30 through 4.34), the UHI is reduced by about 0.4 ºC (23.7 ºC), 1.0 ºC (24.0
ºC), 0.2 ºC (26.4 ºC), 0.1 ºC (28.0 ºC), and 0.5 ºC (29.0 ºC).

Case 035 (July 15–17 Sub-Episode)

As with the discussion above, the following figures show two-dimensional plots of air
temperature and wind vector fields at roughly 40 m above ground level.

On July 15, at 1200 LST (Figure 4.35), the flow into Toronto is northerly and the UHI is
about 2.0 ºC (32.0 ºC). In the next hours (Figures 4.36 through 4.43), the UHI at hours
1300 through 2000 LST are 2.5 ºC (31.5 ºC), 2.0 ºC (31.0 ºC), 1.8 ºC (31.8 ºC), 1.3 ºC
(31.3 ºC), 2.5 ºC (30.5 ºC), 1.0 ºC (28.0 ºC), 1.6 ºC (27.6 ºC), and 1.8 ºC (26.8 ºC).

On July 16, a strong easterly and southeasterly flow, from over Lake Ontario into To-
ronto, causes the UHI to shrink and even disappear during daytime. For example, at 1000
LST on July 16 (Figure 4.44), there appears a small UHI of about 0.8 ºC (25.3 ºC) which
gradually disappears during the rest of the daytime hours. From 1200 to 1500 LST
(Figures 4.45 through 4.48), there is negligible or no UHI in Toronto.



21

On July 17, the wind flow into Toronto reverts to its land type (westerly or southwest-
erly) at 0000 LST (Figure 4.49) and by 1000 LST the UHI reappears. From 1000 to 1800
LST (Figures 4.50 through 4.58), the UHI is about 2.1 ºC (27.1 ºC), 1.6 ºC (27.6 ºC), 1.9
ºC (27.9 ºC), 2.1 ºC (28.1 ºC), 1.5 ºC (28.5 ºC), 1.7 ºC (28.7 ºC), 1.5 ºC (28.5 ºC), 1.7 ºC
(28.7 ºC), and 1.4 ºC (28.4 ºC), respectively. With the westerly winds after 1800 LST, the
UHI is advected offshore onto Lake Ontario.

Figures 4.59 through 4.82 show the corresponding time intervals after the “implementa-
tion” of cool-city strategies. On July 15, the implementation of cool-city strategies results
in reducing the UHI at 40 m above ground level. For example, at hours 1200 through
2000 LST (Figures 4.59–4.67), the UHI is reduced by about 0.5 ºC (31.5 ºC), 0.5 ºC (31.0
ºC), 1.0 ºC (30.0 ºC), 0.4 ºC (31.4 ºC), 0.3 ºC (31.0 ºC), 1.5 ºC (29.0 ºC), 0.0 ºC (28.6 ºC),
0.1 ºC (27.5 ºC), and 0.2 ºC (28.6 ºC), respectively.

On July 16, the effects of cool-city strategies are small just as the UHI is small when the
winds are stronger and from over Lake Ontario (Figures 4.44 through 4.48). For example,
at 1000 LST (Figure 4.68), the UHI is reduced by 0.3 ºC (25.0 ºC). However, from 1200
to 1500 LST (Figures 4.45 through 4.48), a cool-city strategy has no impacts on air tem-
perature at this height (Compare Figures 4.69 through 4.72 with corresponding Figures
4.45 through 4.48).

On July 17, as the wind flow into Toronto reverts to westerly, the effect of cool-city
strategies becomes detectable again. At 0000 LST (Figure 4.73), the conditions are iden-
tical to that of the base-case. This suggests that there is no UHI control effect during
nighttime hours. At hours 1000 through 1800 LST (Figures 4.74 through 4.82), the UHI
is reduced by about 0.2 ºC (26.9 ºC), –0.1 ºC (27.7 ºC), 0.3 ºC (27.6 ºC), 0.1 ºC (28.0 ºC),
0.2 ºC (28.3 ºC), 0.2 ºC (28.5 ºC), 0.0 ºC (28.5 ºC), 0.3 ºC (28.4 ºC), and 0.4 ºC (28.0 ºC),
respectively.

Time-Series Analysis for Cases 035 and 039

Another way to examine the mesoscale model results is to analyze time series of urban
heat island and air temperature changes for base scenario, cool-city scenario, and absolute
air temperatures. The time series are for air temperature at 2 m above ground level. Fig-
ures 4.83 and 4.84 show the simulated urban heat island for Case 039 (July 10–14) and
Case 035 (July 15–17), respectively. The horizontal axis represents local time (LST) and
the vertical axis represents temperature (ºC). Here, the UHI is defined as the difference
between urban-averaged air temperature and rural-averaged air temperature at 2 m. For
this analysis, the total area over which urban temperature is averaged is 320 km2 (80 grid
cells of 4 km2) while that of the rural land (60 grid cells of 4 km2) is 240 km2. In addition,
the selected reference rural area is about 40 km to the west of Toronto which is mostly
upwind and, therefore, is not directly influenced by Toronto’s “heat plume.”

The MM5 simulations suggest the existence of a UHI in the GTA through most of the
July 10–17 episode (Figure 4.83). However, there are times when the UHI is negative,
meaning that the urban area is cooler than the rural ones. While a negative UHI could
also be a result of defining the rural reference point, it is important to note that the ab-
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solute UHI is not very critical. The important aspect is the relative change in UHI, which
is a measure of the impact of cool-city strategies on air temperature. For example, even
though the absolute UHI can be positive or negative, the implementation of cool-city
strategies reduces the UHI during the daytime without affecting it as much at night (Fig-
ure 4.83). However, there are a few hours during this episode when the nighttime UHI is
larger in the cool-city scenario (warming relative to base) and smaller (cooling relative to
base) in other hours. Averaged over the entire urban area, a typical daytime reduction
(cooling) in the UHI is between 0.5 and approximately 1.0 ºC while a typical nighttime
increase (warming) is smaller than 0.25 ºC.

Figure 4.84 shows the above same information for Case 035 (July 15–17). Again, though
it can be negative, the UHI in Case 035 is also positive most of the time. In general, as
seen in Case 039, the cool-city strategies reduce the UHI during the day and have mini-
mal effect at night. A typical daytime UHI reduction is 0.25–0.5 ºC, while a typical
nighttime UHI increase is 0.1 ºC. Thus, the effects of cool-city strategies on air tempera-
ture are smaller during sub-episode 035 than they are during sub-episode 039. Figure
4.85 helps clarify this aspect further. The figure refers to both cases and shows the
changes in the UHI with respect to the base-case conditions. Averaged over 320 km2, the
UHI is typically decreased by 0.6 ºC for Case 039 and by 0.4 ºC for Case 035. At few
times in Case 039, however, the UHI is decreased up to 0.82 ºC.

Figures 4.86 and 4.87 show the change in absolute air temperature (not the UHI) at ran-
domly selected grids in the urban area, which may not necessarily capture the largest
cool-city effect. For Case 039, Figure 4.86 shows the change in absolute air temperature
for six random urban grids at 2 m. Clearly, the urban areas are cooler during the day and
warmer at night as a result of cool-city implementation. The cooling reaches up to 1.4 ºC
on the first day, 1.25 ºC on the second day, 2.7 ºC on the third day, and 1.4 ºC on the
fourth day. The warming reaches up to 0.5 ºC during the first night, 0.7 ºC during the
second night, and 0.4 ºC during the third night. However, even at night, the figures
generally indicate more frequent cooling than warming.

Finally, Figure 4.87 shows the temperature change for Case 035 at the same six random
urban areas used in Case 039. It is obvious that the effects of cool-city strategies in Case
035 are smaller than those in Case 039. Aside from a somewhat questionable spike of
-6.0 ºC (most likely a result of surface modifications during a time of transitional
boundary-layer regime), the figure suggests a typical cooling of between 0.5 and 0.75 ºC,
which may reach up to 1.0 ºC. The warming reaches up to 1.4 ºC at one hour, when there
is large cooling, and about 1.0 ºC during the last night of this sub-episode.

4.1.2 Meteorological Trajectories

The meteorological fields produced by the MM5 were used to compute various trajecto-
ries in space and time. The purpose of this step was to identify the trajectories and extract
the meteorological parameters at each time step. The extracted data would then be used to
drive the photochemical trajectory model (CIT), described below. All trajectories simu-
lated for this modeling episode were indicative of transport conditions. Therefore, as UHI
control would be more beneficial during non-transport conditions, the air quality impacts
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of cool-city strategies might have been underestimated. Ideally, the impacts of cool-city
strategies should have been assessed under a simulated local ozone-formation regime.

For each sub-episode, a set of trajectories was computed. Each back trajectory was 72
hours long. Figure 4.88 shows an ensemble of some of the trajectories generated in this
study. The cluster of pluses (+) outlines the urban area of Toronto. These are some of the
random urban locations selected for time series analyses in section 4.1.1. Figures 4.89
through 4.94 show these trajectories in more detail. In all cases, the trajectories appear to
be generally southerly and southwesterly into the GTA. As well, Figure 4.91 shows two
cases of westerly flow after a southerly stretch in the GTA. Qualitatively, this agrees with
observational studies that suggest, in more than 95% of the cases, trajectories arrive in
southern Ontario and Toronto from the south and southwest after having crossed the
United States Midwest (Yap et al., 1988).

To begin, one may notice that the flow is different in the 039 and 035 sub-episodes. In
Case 039 (July 10–14), the trajectories arrive in Toronto in roughly a southerly flow
(Figure 4.89). Though their paths are somewhat different, they retain the relative orienta-
tion, reversals, and rotations. Some of these trajectories are generated over Lake Huron,
while others are generated over Lake Erie. In Case 035 (July 15–17), the flow is westerly
into Toronto, after a southerly leg emanating in a rural region southwest of Detroit,
Michigan (Figure 4.91). More often than not, the July 10–14 sub-episode trajectories are
generated and flow over Lake Erie and Lake Ontario before arriving in Toronto, whereas
those of the July 15–17 sub-episode are generated over land (compare Figure 4.89 vs.
Figure 4.91).

Nonetheless, it was difficult to construct trajectories that capture the worst air quality
conditions of each episode. It was also difficult to generate trajectories that remain over
the city long enough to produce relevant results. In most cases, the trajectories hovered
over the city for less than an hour. For this analysis, two trajectories were constructed to
represent each of the sub-episodes. These trajectories would go through urban Toronto, or
at least the nearby area, during the afternoon or evening hours (1400 through 2000 LST).

The trajectories used for the air quality analysis are:

1. For the July 10–14 episode (Case 039), the trajectories are shown in Figure 4.94.
In the CIT simulations (discussed in the next section), the left trajectory is used.
For both trajectories, the flow is southerly through Toronto. The trajectories go
through the urban area at about 1500 LST on July 13 and continue for eight more
hours to the north. There is also a flow reversal at the end of the trajectory. As
noted earlier, more than 70% of this trajectory is over water. The left trajectory is
composed of a backward slice ending at the city and a forward slice departing the
city. The junction is at 1500 LST and at a location defined by longitude –79.38
and latitude 43.75. In terms of the MM5 modeling domains, this trajectory resides
in the inner domain (D02) during the last 12 h, while the rest of the trajectory is in
the outer domain (D01).
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2. For the July 15–17 episode (Case 035), the trajectories are shown in Figure 4.93.
In the CIT simulations (discussed in the next section), the middle trajectory is
used (middle of the three westerly trajectories). The flow in this case is westerly
near Toronto. The trajectories arrive in the urban area at about 1600–1800 LST on
July 17. Except for a portion over Lake Huron, this trajectory is about 80% over
land. The trajectory consists of one backward slice ending in the GTA. With
respect to the MM5 modeling domains, this trajectory resides in the inner domain
(D02) during the last 10 h, while the rest of the trajectory is in the outer domain
(D01).

Following selection of these trajectories, the meteorological parameters along the trajec-
tory at each space/time step are extracted and used as input into the emission preproces-
sor to adjust biogenic emissions and to drive the CIT photochemical model. Thus, the
CIT model receives time-space location information from the meteorological trajectories,
as well as relevant meteorological parameters such as temperature, winds, mixing height,
water vapor mixing ratio, and the rest.

4.1.3 Air Quality Trajectories

From a certain number of trajectories generated, the two identified in section 4.1.2 will be
discussed. These trajectories are shown in Figures 4.95, 4.96, and 4.97. The figures also
show observed ozone mixing ratios (contours) and wind vectors (arrows).

Figures 4.95 and 4.96 depict the July 10–14 trajectory (Case 039), overlaid on the con-
tours of observed ozone mixing ratios and the wind vectors. Figure 4.95 depicts 1500
LST on July 13, whereas Figure 4.96 depicts 2000 LST. The observed mixing ratios near
urban Toronto are around 90 ppb at 1500 LST and 40 ppb at 2000 LST. At 1500 LST, the
observed wind appears to be westerly and southwesterly in the Toronto area and south-
erly in the Hamilton area. At 2000 LST, however, the wind appears less consistent:
roughly westerly north of Toronto, northeasterly in Toronto, and easterly near Hamilton.
The corresponding MM5 simulated winds compares favorably at 1500 LST (Figure
4.98), and unfavorably at 2000 LST (Figure 4.99). At 2000 LST, the MM5 simulated
flow is southwesterly. While the MM5 does generally simulate comparable rotations in
the wind, it does not reproduce the “chaotic” nature of the observed flow at 2000 LST.

For July 15–17 (Case 035, Figure 4.97), the observed ozone mixing ratios near Toronto
are about 40 ppb at 1700 LST. The wind appears to be southeasterly in both the Toronto
and Hamilton areas. The MM5 simulations for this hour, however, show southwesterly
flow in these areas (Figure 4.57). Again, it must be emphasized that the scale of the mod-
eling versus that of observations may influence these qualitative comparisons.

Figures 4.100 and 4.101 show the simulated ozone mixing ratios along the last legs of the
trajectories depicted in Figures 4.95 and 4.97. The trajectories in Figure 4.100 use initial
conditions that are half of the values shown in Figure 4.4. Figure 4.101, on the other
hand, shows trajectories that were initialized with concentrations (shown in Figure 4.4)
that are double those of trajectories in Figure 4.100. The purpose of these runs was to test
the sensitivity of the results at the end of the trajectories to the initial conditions.
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In Figure 4.100, the mixing ratios are shown in ppm ozone for the last 20 h of trajectory
039 (bottom curve) and the last 17 h of trajectory 035 (upper curve). The CIT simulates
higher mixing ratios for trajectory 035 than it does for trajectory 039. This is probably
because the former’s path is mostly over land, where emissions exist, whereas the latter
path is mostly over water, where there are no significant emissions. This could also
explain why, compared to the observations, the model overestimates mixing ratios in tra-
jectory 035 and underestimates them for trajectory 039. In the urban area, for example, at
1500 LST in trajectory 039, the model predicts 60 ppb ozone whereas observations are
around 90 ppb. On that same trajectory, the model simulates 30 ppb ozone upwind of the
urban area whereas the observations indicate 40 ppb. In trajectory 035, the model predicts
80 ppb ozone in the urban area whereas the observations are around 40 ppb.

In general, it cannot be expected that a trajectory model capture the mixing ratios of the
peaks in fully dynamic three-dimensional situation as well as a grid model. The trajectory
is subject to space and time differences from the time and location of the peak and thus
may not capture it (e.g., a few grids away or an hour or two apart, etc.). In addition, the
data we obtained was not initially intended for use in a trajectory model and thus some
assumptions and interpolations, such as using 32 km grid emissions in preparing 2 km
grid emissions, had to be made; these may explain the loss of detail

Case 039

The portion of trajectory 039 shown in Figure 4.100 starts over Lake Erie. The trajectory
continues over the lake until about 1000 LST. Between 1000 LST and 1200 LST the tra-
jectory is over land (the land portion between Lake Erie and Lake Ontario). At about
1400 and 1500 LST, the trajectory reaches the urban area and continues until about 1600
LST. After 1600 LST, the trajectory continues north and reverses direction towards the
city at about 1700 LST.

The base-line simulated mixing ratios range from 10 ppb ozone at night over Lake Erie to
about 62 ppb slightly downwind of urban Toronto at about 1600 LST. To the north of
Toronto, mixing ratios drop again to about 32 ppb and start increasing afterwards until
1900 LST, a time interval when the trajectory turns back towards the city. The mixing
ratios reach another peak of about 52 ppb ozone and then fall all the way down to about
25 ppb at the end of the trajectory.

To estimate the effects of cool-city strategies on this trajectory, the entire process (MM5,
meteorological trajectories, and air quality trajectories) was repeated after “implementa-
tion” of increased surface albedo and urban reforestation. With respect to the CIT trajec-
tories, three cool-city scenarios were analyzed. One scenario, referred to as Case A, cor-
responds to the cool-city trajectory exactly as predicted by the model. The second
scenario, referred to as Case B, is similar to Case A but with the last portion of the tra-
jectory moved over urban grids where the effects of cool-city strategies were larger.
Finally, a third scenario, referred to as Case C, is also analyzed where the last portion of
the trajectory is modified to reflect the maximum temperature effects of cool-city strate-
gies. The reason for developing Cases B and C is that Case A, as predicted by the model,
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does not go through the areas with largest modification effects and does not remain over
the city long enough to produce significant effect.

The base case, Case A, Case B, and Case C are depicted by a thin solid line, a thick
broken line, a thin short-broken line, and a thin long-broken line, respectively (Figure
4.100). The photochemical model suggests that the effects of cool city-strategies on tra-
jectory 039 (bottom set of curves in the figure) is to increase mixing ratios by up to 3 ppb
over Lake Ontario starting at 1300 LST. This increase is caused by the slower winds.
However, the mixing ratios are decreased by 1–4 ppb ozone in and immediately down-
wind of the city. Later on, the mixing ratios are further decreased by up to 8 ppb ozone
north of the city after the flow reverses course towards urban Toronto.

The increase in mixing ratios upwind also results from the differing trajectory and is sub-
sequently corrected in the trajectories for Cases B and C. Case B shows that the mixing
ratios do not change up until the urban area is reached. The mixing ratios decrease by
some 1 to 2 ppb ozone in the urban area and up to about 2.5 ppb ozone immediately
downwind. However, the cool-city effects are smaller and almost negligible after the flow
reverses towards urban Toronto. In fact, as after 1800 LST, there could be even a small
increase in mixing ratios. In Case C, the mixing ratios start decreasing slowly once the
flow passes the lake. The largest differences here are about 1.3 to 2 ppb ozone over the
urban area and about 1.5 ppb ozone its downwind.

Percentage-wise, these numbers show that there can be increases of up to 5% over the
lake (in one trajectory) and decreases of 3 to 7% in and immediately downwind of the
urban area. After the flow reversal, the decrease can reach 15% north of Toronto. How-
ever, as in this study, it is generally difficult to draw a final conclusion from these results
because a trajectory model was used with a new setup. For example, it is not known how
the change in ozone level fluctuates during the course of a day or episode without
running additional trajectories. This can be improved upon in the future.

Figure 4.101 shows the same trajectories (bottom set of lines) repeated with doubled ini-
tial mixing ratios at the beginning of each trajectory. The impact of changes in initial
conditions is small and there are very minor changes from Figure 4.100. In Figure 4.101,
the mixing ratios are slightly higher. For example, they show a peak of 63.6 ppb ozone
instead of 60.8 ppb ozone. However, the changes in mixing ratios, caused by cool-city
strategies, are relatively similar in both figures. For example, in Case A, the mixing ratio
increase is small; it is at most 2.3 ppb (3.8%). In Case A, the mixing ratio decrease is up
to 1 ppb (2%) in the urban area at 1600 LST, 3.4 ppb (7.5%) at 1700 LST, and 2.5 ppb
(7%) immediately downwind of Toronto urban area. After the flow reversal, the decrease
reaches up to 7 ppb (13%). Other numbers for cases B and C are also changed, but by so
small amounts which are not worth discussing here.

The temperature and ozone mixing ratio profiles along the trajectory are analyzed to
develop ozone-temperature correlations. Figure 4.102 shows the air temperature along the
last 12 h of this trajectory for the base case as well as Cases A, B, and C. In developing
such correlation, temperature is used as a surrogate for the effects of wind speed and
direction, boundary-layer height and mixing, and photochemical production rate. It
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should be stated very clearly here that this is a correlation along the trajectory, and it
does not represent a correlation for the urban area. The correlation along the trajectory
includes an overwhelmingly large area not affected by surface modifications, as well as
areas affected by these modifications.

A period of six hours near the end of this trajectory is examined to find out whether
developing such a correlation is feasible. Figure 4.103 depicts a scatter plot of tempera-
ture versus ozone during these six hours. As shown in this figure, it is difficult to find
such a correlation. This difficulty is partly created by the large change in ozone levels at
very small temperature changes. There is also an issue of time scale for chemical reac-
tions: some changes occur after temperature is modified. Without getting into this aspect,
and after removing the large changes in ozone level (outlier data), the statistical regres-
sion yields a slope of ∆[O3]/∆T of 0.65 ppb/K. However, the correlation is weak and its
R2 is only 0.21.

Case 035

The upper curves in Figure 4.100 show the portion of this trajectory that starts in a rural
area southwest of Detroit, Michigan, half way between Lansing, Michigan, and Toledo,
Ohio. The first half of the trajectory is roughly southerly and the second half is westerly,
after turning east over Lake Huron. It reaches urban Toronto at about 1400–1700 LST on
July 17. The simulated base mixing ratios range from 15 ppb ozone at night to about 80
ppb ozone in the surrounds of urban Toronto at about 1600 LST. To estimate the effects
of cool-city strategies on ozone air quality in Toronto, the entire process (MM5, mete-
orological trajectories, and air quality trajectories) is repeated after “implementation” of
increased surface albedo and urban reforestation. With respect to the CIT trajectories, the
same cool-city scenarios A, B, and C (discussed above for Case 039) are used again for
Case 035.

Figure 4.100 depicts the base case, Case A, Case B, and Case C in a thin solid line, a
thick broken line, a thin short-broken line, and a thin long-broken line, respectively. The
trajectory model suggests that the effects of cool city-strategies on trajectory 035 (top set
of curves in the figure) are smaller than 1 ppb ozone. Again, this is probably because the
trajectory does not capture the full effect of meteorological changes at locations of inter-
est. In Case B, the mixing ratios begin to decrease at about 1400 LST until the end of the
trajectory. The mixing ratios decrease by 1 to 2 ppb ozone in the urban area and its sur-
round. At 1600 LST, the decrease is 1.6 ppb ozone and about a half-hour later it is 1.8
ppb ozone. In Case C, the mixing ratios start decreasing at the same time as in Case B.
However, in Case C the decreases in mixing ratios reach 1.9 ppb ozone at 1500 LST and
2.4 ppb ozone at 1600 LST and beyond. In general, trajectory 035 does not show in-
creases in mixing ratios (as in Case 039), possibly because the trajectory does not go over
the lake where winds are slowed. Percentage-wise, the decrease in mixing ratios for tra-
jectory 035 can reach up to 2.5% at 1500 LST and up to about 3% at 1600 LST and
onwards.

Figure 4.101 shows the same trajectories (top set of lines) repeated with doubled initial
mixing ratios (those in Figure 4.4) at the beginning of each trajectory. Compared to tra-
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jectories in Figure 4.100, there are minor changes suggesting small impacts from chang-
ing initial conditions. The mixing ratios show slightly higher peaks, such as 83.8 ppb in-
stead of 79.9 ppb ozone. In Figure 4.101, the changes in mixing ratios, as a result of cool-
city strategies, are relatively similar to the changes in Figure 4.100. For example, at 1600
LST, the base-case mixing ratio is 84.2 ppb, while Cases A, B, and C reduce mixing
ratios by 0.4 ppb (0.5%), 1.9 ppb (2.2%), and 2.5 ppb (3%), respectively. This is, in part,
due to the fact that the initial conditions are 72 h earlier. Consequently, the model “for-
gets” the initial conditions by the time the trajectories reach the urban area.

As in Case 039, an attempt is made to develop an ozone-temperature correlation for Case
035. Figure 4.104 shows the air temperature along the last 10 h of this trajectory for the
base case as well as Cases A, B, and C. Again, it should be stated clearly that this is a
correlation along the trajectory, and it does not represent a correlation for the urban
area. A period of 6 h near the end of this trajectory is examined for this purpose. Figure
4.105 depicts a scatter of temperature versus ozone during these 6 h. Making the same
assumptions as in Case 039, a regression of this data set suggests a relatively better cor-
relation in Case 035, with an R2 of 0.87 and the ∆[O3]/∆T slope of 0.50 ppb/K.

Significance of Cool-City Air Quality Impacts

The impacts of cool-city strategies may seem small at first. However, to appreciate the
significance of cool-city strategies, their impacts should be compared with the impacts of
other such strategies. For example, the air quality impacts of cool-city strategies could be
compared to the reductions in NOx and/or VOCs emissions that would be needed to pro-
duce the same ozone air-quality effects. It should be emphasized that these comparisons
are very qualitative and should not be used explicitly.

For this purpose, the results from the trajectory simulations are compared to simulated air
quality impacts of emission reduction strategies for the 1–6 August 1988 episode in
WQC from a previous study (Environment Canada, 1996). Acid Deposition and Oxidants
Model (ADOM) in combination with Mesoscale Community Model (MC2) were the
modeling systems selected for that study. These models were run at a resolution of 40 and
20 km, using this combined system. Those simulations suggested that a decrease of 30%
in regional NOx emissions causes ozone mixing ratios to decrease by 5–10% in southern
Ontario. This amount is roughly equivalent to the range of reductions in ozone obtained
over the trajectory simulations in this study (with 3% being representative and up to 7%
or larger was reported).

Using a Lagrangian version of ADOM (ALOM), along with MC2, an Environment Can-
ada working group (1996) has studied the impacts of a number of emission reduction
strategies (scenarios) on ozone air quality in the WQC. In one scenario, known as “Phase
I Management Plan emission Reduction Scenario,” reductions of 25% were applied to
NOx and VOCs emissions in the provinces of Ontario, Quebec, and New Brunswick. For
this scenario, the modeling study suggested a reduction of a few ppb in mixing ratio. In
the GTA, on 3 August 1988, the reduction in ozone mixing ratios was 2 ppb, which is
similar to the reductions obtained with the photochemical trajectory simulations in this
study.
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This 2 ppb reduction can also be achieved by reducing either Canadian VOCs emissions
by 50% or Canadian NOX emissions by 75%. Again, it should be stressed that these com-
parisons are very qualitative. In addition, there is a risk in drawing such equivalencies
because the results come from very different assumptions and models. However, the pur-
pose here is to “assign” some “value” to the changes reported in this study.

4.2 Episodic Extrapolations (for Energy Modeling)

One additional purpose for performing the mesoscale meteorological simulations in this
study is to develop an entire year of modified hourly air temperatures, e.g., modified
Typical Meteorological Year (TMY) data. The annual hourly data thus generated can
then be used in building energy-use modeling, such as the building energy model (DOE-
2). The data generated and discussed in this section are then transferred to another
modeling component of this TAF-sponsored study, as described in Konopacki and Akbari
(2001).

This section is kept very brief and the reader is directed to consult Taha (1998) and Taha
et al. (1999) for additional information. Here, it suffices to explain that the basis of the
above-mentioned hourly weather modifications is the development of correlation be-
tween incoming solar radiation and change in air temperature (in this case, the change in
air temperature as a result of cool-city strategies). Figures 4.106 and 4.107 show the
MM5 simulated urban-averaged changes in air temperature, as a result of cool-city sce-
narios, along with the MM5 simulated incoming solar radiation at ground level. One can
qualitatively note that the urban-averaged change air temperature is larger as solar radia-
tion increases.

From this analysis (Taha, 1998; Taha et al., 1999), a correlation was obtained for the
January and July episodes in Toronto. The correlation has the form:

∆T = - 0.0018 I ,

where ∆T is in either Kelvin or Celsius and I is solar intensity in W/m2. This assumes that
the nighttime increase in air temperatures is negligible and may be ignored. To account
for snow effect, the correlation is not applied during the months of October through
March when snow is present.
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5 Conclusion

In this study, a short, preliminary analysis was conducted to assess the potential mete-
orological and ozone air-quality implications of implementing cool-city strategies in the
Greater Toronto Area (GTA), Canada. A mesoscale meteorological model (PSU/NCAR
MM5 v3.4) was used to simulate the various meteorological aspects related to changes in
urban surface albedo and vegetative cover. In addition, a Lagrangian photochemical tra-
jectory model (CIT) was used to obtain an initial insight into the possible impacts on air
quality in the region. The modeling was performed for 10–17 July 1995. This time inter-
val was split into two sub-episodes: July 10–14 and July 15–17, inclusive.

The surface modifications, an increase of 0.13 in urban surface albedo and an increase of
10% in vegetative cover, were assumed to apply to an area of about 420 km2 in the GTA
and about 40 km2 in the Hamilton area. Because the “modified” area was actually smaller
than the total area of the Hamilton-Toronto-Oshawa urbanized corridor, this scenario
could alternatively be interpreted as smaller increases in albedo or vegetation fraction but
spread out over a larger area.

The meteorological simulations suggested an urban heat-island effect (UHI) in the GTA
throughout the episode. While the UHI was observed during both day and night, the day-
time UHI was relatively more persistent than that of the nighttime. The results suggested
that even though the UHI can be positive or negative, the effect of cool-city implementa-
tion, in general, was to reduce the UHI during daytime without affecting it much at night.
Averaged over the entire Toronto urban area, a typical daytime reduction in the UHI
(cooling) was 0.5 to almost 1 ºC and the typical nighttime increase in UHI (warming) was
smaller than 0.25 ºC. However, in specific grids, the decrease in air temperature was
larger than these averages. In randomly selected urban grids, the change in absolute air
temperature at 2 m above ground could reach up to 2.7 ºC, and the warming could reach
up to 0.7 ºC. The simulations indicated more frequent cooling than warming, even at
night. The meteorological simulations also produced some larger cooling, for example up
to 6 ºC, which was considered questionable and was not included in the analysis.

The photochemical trajectory simulations of the July 10–14 sub-episode suggested that
the effects of cool city-strategies were to decrease ozone concentrations by 1–4 ppb in
and immediately downwind of the GTA. However, ozone concentrations could also be
increased by 2–3 ppb in some areas upwind of the GTA. The model also predicted a de-
crease as large as 8 ppb in ozone concentration. The changes in ozone concentration
translated into a mixing ratio decrease of 3 to 7.5% in and immediately downwind of the
urban area. In one simulation, after a flow reversal, the mixing ratio decrease in north of
Toronto reached 15%, which had to be discarded as too large a decrease. For the July 15–
17 sub-episode, the trajectory model suggested that the effects of cool city-strategies de-
creased mixing ratios by 1 to 2 ppb in the urban area and its surround. The decreases
could reach up to 2.4 ppb. Percentage-wise, the decrease in mixing ratios for this episode
could reach up to 3%.

This study was very preliminary. Its purpose was to qualitatively answer the question of
whether it would be worth pursuing heat-island mitigation studies for GTA further. Based
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on the preliminary results reported here, further study of UHI control in Toronto would
be worth pursuing. This study could serve as an initial step toward more comprehensive
and detailed studies in the future.

6 Recommendations

As mentioned throughout this report, this study was intended to serve as an initial
assessment of the potential meteorological and air quality impacts of cool-city strategies
in the GTA. The scope of the study and the resources allocated permitted only a modest
modeling and analysis effort. This study, however, could serve as an initial step toward
more comprehensive future studies for which the following recommendations might
prove helpful:

• Because a trajectory air quality model was used in this study, the simulations did
not capture the character of the episode or the range of possible impacts from
cool-city strategies. There was also a need to simulate conditions to account for
local, non-transport ozone production in the area. Therefore, it is recommended
that the follow-up studies use the same meteorological model (MM5), but that it
use a better air quality model, such as fine-resolution 3-D photochemical grid
models.

• Rigorous model performance evaluation (meteorological or photochemical) was
not attempted during the short time frame of this study. This should be done in the
future, especially if this work is to become a basis for regulatory or planning
purposes.

• Fine resolution land-use and land-cover data needed for this type of modeling
work were not available to us. As a result, simplified assumptions were made. The
entire Hamilton-Toronto-Oshawa “corridor” should be well characterized. There-
fore, there is a need to repeat the simulations with a fine-resolution land-use clas-
sification that allows for sub-urban classifications as well. For example, use of
aerial photography or fine-resolution surface observations is recommended.

• The resolution of emissions data obtained in this study was not fine enough to
match that of the meteorological or the trajectory models. In the future, emissions
data at resolutions of 4 km or better should be used, especially near the urban
areas of interest.

• This study carried out a single-episodic assessment. In the future, additional epi-
sodes need to be identified and multi-episodic modeling should be performed. The
purpose should be to assess the impacts and effectiveness of cool-city strategies
under various flow regimes and synoptic conditions.
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Figure 2.1: Monthly averages of mean and mean daily maximum ozone, ppb, (1986–1993) in Toronto.
Source: Environment Canada, 1996.

Figure 2.2: Hourly average ozone mixing ratios, ppb, for summer and winter (1986–1993) in Toronto.
Source: Environment Canada, 1996. (Horizontal axis is time, LST).
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Figure 2.3: Percentage occurrence of hours with ozone mixing ratios greater than 82 ppb by time of day
(1986–1993) Toronto. Source: Environment Canada, 1996.

Figure 3.1. Modeling domains for the MM5 simulations. D01 has a resolution of 8 km and D02 a resolu-
tion of 2 km.
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Figure 3.2. Land-use and land-cover categories in the coarse domain. Red color denotes urban areas.
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Figure 3.3. Land-use and land-cover distribution in the fine domain. Red color denotes urban areas.
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NMHC at a rural site (Hastings), summer
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Figure 3.4. Initial conditions (doubled initial mixing ratios) for NMHC at Hastings, Canada in the summer.
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Figure 4.1. July 11, 1995 at 0000 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.2. July 11, 1995 at 0900 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.3. July 11, 1995 at 1000 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.4. July 11, 1995 at 1100 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.5. July 11, 1995 at 1200 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.6. July 11, 1995 at 1400 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.7. July 11, 1995 at 2000 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.8. July 12, 1995 at 0800 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.9. July 12, 1995 at 0900 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.10. July 12, 1995 at 1000 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.11. July 12, 1995 at 1100 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.12. July 12, 1995 at 1200 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.13. July 13, 1995 at 0800 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.14. July 13, 1995 at 0900 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.15. July 13, 1995 at 1000 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.16. July 13, 1995 at 1100 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.17. July 13, 1995 at 1200 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.18. July 11, 1995 at 0000 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.19. July 11, 1995 at 0900 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.20. July 11, 1995 at 1000 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.21. July 11, 1995 at 1100 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.22. July 11, 1995 at 1200 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.23. July 11, 1995 at 1400 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.24. July 11, 1995 at 2000 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.25. July 12, 1995 at 0800 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.26. July 12, 1995 at 0900 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.27. July 12, 1995 at 1000 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.28. July 12, 1995 at 1100 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.



69

Figure 4.29. July 12, 1995 at 1200 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.30. July 13, 1995 at 0800 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.31. July 13, 1995 at 0900 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.32. July 13, 1995 at 1000 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.33. July 13, 1995 at 1100 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.34. July 13, 1995 at 1200 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.35. July 15, 1995 at 1200 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.36. July 15, 1995 at 1300 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.37. July 15, 1995 at 1400 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.38. July 15, 1995 at 1500 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.39. July 15, 1995 at 1600 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.40. July 15, 1995 at 1700 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.41. July 15, 1995 at 1800 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.42. July 15, 1995 at 1900 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.43. July 15, 1995 at 2000 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.44. July 16, 1995 at 1000 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.45. July 16, 1995 at 1200 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.46. July 16, 1995 at 1300 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.47. July 16, 1995 at 1400 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.48. July 16, 1995 at 1500 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.49. July 17, 1995 at 0000 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.50. July 17, 1995 at 1000 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.51. July 17, 1995 at 1100 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.52. July 17, 1995 at 1200 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.53. July 17, 1995 at 1300 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.54. July 17, 1995 at 1400 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.55. July 17, 1995 at 1500 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.56. July 17, 1995 at 1600 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.57. July 17, 1995 at 1700 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.58. July 17, 1995 at 1800 LST base case scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.59. July 15, 1995 at 1200 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.60. July 15, 1995 at 1300 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.61. July 15, 1995 at 1400 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.62. July 15, 1995 at 1500 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.63. July 15, 1995 at 1600 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.64. July 15, 1995 at 1700 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.65. July 15, 1995 at 1800 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.66. July 15, 1995 at 1900 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.67. July 15, 1995 at 2000 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.68. July 16, 1995 at 1000 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.69. July 16, 1995 at 1200 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.70. July 16, 1995 at 1300 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.71. July 16, 1995 at 1400 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.72. July 16, 1995 at 1500 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.73. July 17, 1995 at 0000 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.74. July 17, 1995 at 1000 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.75. July 17, 1995 at 1100 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.76. July 17, 1995 at 1200 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.77. July 17, 1995 at 1300 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.78. July 17, 1995 at 1400 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.79. July 17, 1995 at 1500 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.80. July 17, 1995 at 1600 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.81. July 17, 1995 at 1700 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.82. July 17, 1995 at 1800 LST cool-city scenario: Simulated temperature and wind-vector field,
for the inner, fine-resolution (2-km) domain.
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Figure 4.83: UHI time series for case 039 for base (solid) and cool-city (broken) scenarios. Time series
are for averaged urban temperatures vs. averaged rural temperatures.
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Figure 4.84: UHI time series for case 035 for base (solid) and cool-city (broken) scenarios. Time series
are for averaged urban temperatures vs. Averaged rural temperatures.
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Figure 4.85: Change in UHI (with respect to base-case UHI) for cases 039 and 035 as a result of cool-city
scenarios.
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Figure 4.86: Change in absolute air temperature (not UHI) at six random urban locations.
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Figure 4.87: Change in absolute air temperature (not UHI) at six random urban locations.
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Figure 4.88: Selected meteorological trajectories (from ensemble generated in this study). These trajecto-
ries arrive urban Toronto (shown with red pluses) 48-72 hours later.
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Figure 4.89: Trajectories for case 039.
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Figure 4.90: Selection of trajectories for case 039.
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Figure 4.91: Trajectories for case 035.
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Figure 4.92. Case 039 trajectories.
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Figure 4.93: Selected trajectories for case 035 and 039.
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Figure 4.94: Selected trajectories for case 039.
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Figure 4.95: Photochemical trajectory for case 039. Observed ozone concentrations (contour values) are
for 15 LST on July 13.
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Figure 4.96: Photochemical trajectory for case 039. Observed ozone concentrations (contour values) are
for 20 LST on July 13.

Start of trajectory
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Figure 4.97: Photochemical trajectory for case 035. Observed ozone concentrations (contour values) are
for 17 LST on July 17.
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Figure 4.98: Simulated temperature and wind-vector fields.
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Figure 4.99: Simulated temperature and wind-vector fields.
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Ozone Concentration along trajectories
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Figure 4.100: Simulated ozone concentrations (ppm) along trajectories 039 (bottom) and 035 (top). Solid
line is base case, thick broken line is case A, thin short-broken line is case B, and thin long-broken line is
case C. See text for discussion of these cases.
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Figure 4.101: Simulated ozone concentrations (ppm) along trajectories 039 (bottom) and 035 (top). This
set was simulated with doubled initial mixing ratios. Solid line is base case, thick broken line is case A, thin
short-broken line is case B, and thin long-broken line is case C. See text for discussion of these cases.
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Trajectory air temperature (case 039)
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Figure 4.102: Air temperature (2 m above ground) for last 12 hours of trajectory.
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Figure 4.103: Scatter plot of ozone changes and temperature changes for case 039.
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Trajectory air temperature
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Figure 4.104: Air temperature (2 m above ground) for last 10 hours of trajectory.

-2.5

-2

-1.5

-1

-0.5

0
-5 -4 -3 -2 -1 0 1

Temperature change (C)

O
zo

ne
 c

ha
ng

e 
(p

pb
)

Figure 4.105: Scatter plot of ozone change vs. temperature change for case 035.
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Simulated urban-averaged temperature change and 
incoming solar radiation (January 15-17, 1995)
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Figure 4.106: Simulated air temperature change and solar radiation.

Simulated urban-averaged temperature change and incoming solar 
radiation (July 15-17, 1995).
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Figure 4.107: Simulated air temperature change and solar radiation.


